
TD
C

8
H

Q

TDC8HQ
User Guide

ww w. roentdek.com

RoentDek

 Handels GmbH
Supersonic Gas Jets
Detection Techniques
Data Acquisition Systems
Multifragment Imaging Systems

Contents

1 Introduction 5

1.1 Features . 5

1.2 Applications . 5

2 Hardware 6

2.1 Installing the PCIe Board . 6

2.2 TDC8HQ Inputs and Connectors . 6

2.3 Status LEDs . 9

2.4 Synchronizing multiple boards . 9

2.4.1 Connecting multiple boards . 9

2.4.2 ClockBox . 10

2.4.3 Crates for multiple boards . 10

3 TDC8HQ Functionality 11

3.1 Grouping and Events . 11

3.2 Auto-Triggering Function Generator . 12

3.3 Timing Generator (TiGer) . 12

3.3.1 Trigger Sources . 13

3.3.2 TiGer Example: Generate 200 kHz Start Pulse . 15

3.3.3 TiGer Example: Delayed Output frommultiple sources 15

3.3.4 Triggering the ADCwith the TiGer . 15

3.4 Gating . 16

3.5 Triggerable ADC . 17

4 Driver Programming API 18

4.1 Constants . 18

4.2 Driver Information . 18

4.3 Initialization . 19

4.3.1 Structure xhptdc8_manager_init_parameters . 19

4.4 Status Information . 20

4.4.1 Functions for Information Retrieval . 20

4.4.2 Structure xhptdc8_static_info . 21

2 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

4.4.3 Structure xhptdc8_param_info . 22

4.4.4 Structure xhptdc8_fast_info . 23

4.4.5 Structure crono_pcie_info . 23

4.4.6 Structure xhptdc8_temperature_info . 24

4.4.7 Structure xhptdc8_clock_info . 25

4.5 Configuration . 25

4.5.1 YAML config files . 26

4.5.2 Structure xhptdc8_manager_configuration . 26

4.5.3 Structure xhptdc8_device_configuration . 26

4.5.4 Structure xhptdc8_trigger . 28

4.5.5 Structure xhptdc8_tiger_block . 29

4.5.6 Structure xhptdc8_channel . 30

4.5.7 Structure xhptdc8_adc_channel . 30

4.5.8 Structure xhptdc8_grouping_configuration . 31

4.6 User Data Storage . 32

5 Run Time Control 33

5.1 Controlling the State of the Driver . 33

5.2 Readout . 33

6 Output Data Format 34

6.1 MemoryManagement . 34

6.1.1 Acknowledge Packets . 34

6.1.2 TDC8HQ-Internal Memory Layout . 34

6.2 Structure TDCHit . 34

6.2.1 TDCHit Types . 35

7 Technical Data 37

7.1 Performance . 37

7.1.1 TDCmeasurement Characteristics . 37

7.1.2 Oscillator Time Base . 37

7.1.3 ADC . 37

7.2 Electrical Characteristics . 38

7.2.1 Power Supply . 38

7.2.2 TDC Inputs . 38

3 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

7.2.3 ADC Inputs . 39

7.2.4 Clock input J2 . 39

7.3 Information Required by DIN EN 61010-1 . 40

7.3.1 Manufacturer . 40

7.3.2 Intended Use and System Integration . 40

7.3.3 Environmental Conditions for Storage . 40

7.3.4 Environmental Conditions for Operation . 41

7.3.5 Cooling . 41

7.3.6 Recycling . 41

4 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

1 Introduction

The TDC8HQ is a streaming high-resolution time-to-digital converter. The time-of-arrival of leading or trailing
edges of digital pulses are recorded in an infinite stream of timestamps.

A grouping mode is available that emulates common-start or common-stop behavior.

1.1 Features

• 8-channel streaming TDCwith 8 ps resolution

• Bin size: 13 ps

• Double-pulse resolution: 5 ns

• Dead time for readout: none

• L0 FIFO: 15 words/channel

• L1 FIFO: 512 words/channel

• L2 FIFO: 8000 words

• Synchronization of up to six boards.

• PCIe 1.1 x1 with 200MB/s throughput

• Auxiliary triggered ADC input

1.2 Applications

The TDC8HQ can be used in all time measurement applications with up to eight channels with a single board or
up to 48 channels when synchronizing six boards. For applications with four or fewer channels that do not require
the flexibility of a streaming TDC, simpler products are available on our website www.cronologic.de.

The TDC8HQ is well suited for the following applications:

• Time-Of-Flight Mass Spectrometers (TOF-MS) with segmented detectors

• Automated test equipment

• Coincidence measurements

• Quantum Key Distribution (QKD)

• Time-correlated single-photon counting (TCSPC)

• Synchronization of atomic clocks

• Fluorescence Lifetime ImagingMicroscopy (FLIM)

5 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.cronologic.de/products/products-overview#tdcdata
https://www.roentdek.com/

2 Hardware

2.1 Installing the PCIe Board

The TDC8HQ board can be installed in any PCIe-CEM slot with x1 or more lanes. Make sure that the PC is
powered off and that the main power connector is disconnected while installing the board.

2.2 TDC8HQ Inputs and Connectors

Figure 2.1 shows the location of the inputs on the slot bracket.

ADCTRG12345678

INITIALIZED

CAPTURING

Figure 2.1 Input connectors of the TDC8HQ on the PCIe bracket.
Note, the TRG connector acts as a trigger only for the
ADC channel, not the TDC channels (see Section 3.5).

D
A
C

+

-50

trigger_threshold[i]

Figure 2.2 Input circuit for each of the input channels. Note,
the TRG connector acts as a trigger only for the ADC
channel, not the TDC channels (see Section 3.5).

LEMO-00 connectors are used for input connection. The inputs are AC-coupled and have an impedance of 50Ω.
A schematic of the input circuit is shown in Figure 2.2. The digital threshold for any input can be adjusted to
comply with a multitude of single-ended signaling standards. The threshold can also be used to configure the input
for either positive or negative pulses.

The connectors can also be used as outputs. AC-coupled output pulses for automatic internal triggering and
control of external devices can be generated using the TiGer timing pattern generator. See Section 3.3 for details

6 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

on the TiGer. Furthermore, three inter-board connectors can be found near the top edge of the TDC8HQ board,
as displayed in Figure 2.3. Connector J25 is reserved for future use. The pinout of connector J12 is shown in
Table 2.1 and the pinout of connector J6 is depicted in Table 2.2. Connector J2 is a coax clock input that must
receive a 10MHz clock if multiple boards are used together as described in Section 2.4.

Trg�����������(for��ADC)

1

2

3

4

5

6

7

8

J12

J25

J13

LED1 LED2

ADC

J2

Figure 2.3 Schematic view of a TDC8HQ board including the
inter-board connectors.

7 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

Pin Name

1, 2 GND

3, 4 external CLK in N, external CLK in P

5, 6 GND

7, 8 reserved/NC

9, 10 GND

11, 12 reserved/NC

13, 14 GND

15, 16 reserved/NC

17, 18 GND

19, 20 reserved/NC

21, 22 GND

23, 24 reserved/NC

25, 26 GND

27, 28 reserved/NC

29, 30 GND

31, 32 reserved/NC

33, 34 GND

Table 2.1 Pinout of connector J12.

Pin Name

1 +3.3V

2 - 9 reserved/NC

10 GND

Table 2.2 Pinout of connector J6.

8 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

2.3 Status LEDs

Four status LEDs are present on the board. Two are located on the PCB, two more on the PCIe bracket.

• On the PCIe bracket (see Figure 2.1): The top LED lights up green after the board is initialized. The
bottom LED lights up briefly while the board is being configured and continuously while the card is
capturing.

• On the PCB (see Figure 2.3): The red LED2 lights up during the configuration of the FPGA and turns off
afterward. If it stays permanently lit, the configuration failed. The green LED1 lights up after the board is
initialized.

2.4 Synchronizing multiple boards

If more than eight TDC inputs are required, up to six boards can be synchronized within a system.

The TDC8HQAPI described in Chapter 4 manages up to six boards automatically and provides a single data
stream that contains sorted hit data from all boards in chronological order. Channel A of each board is assigned
channel number board_index × 10. The board_index is assigned to the boards in the order of the serial
numbers starting at 0.

2.4.1 Connecting multiple boards

The boards must each receive a common 10MHz clock signal on connector J2. The connector is inside the PC
enclosure. Connectors J12 of all boards must be connected with a flat band cable with a terminator at each end.
Cable and Terminator are available from cronologic. See Figure 2.4 for a wiring example.

J1
2

J2
5

J1
3

J2

J1
2

J2
5

J1
3

J2

J1
2

J2
5

J1
3

J2

J1
2

J2
5

J1
3

J2

C
LK

4
C
LK

5
C
LK

7

CLK6

JP3
JP4

JP7

te
rm

in
at
io
n

te
rm

in
at
io
n

Figure 2.4 Synchronizing multiple boards with a ClockBox.

9 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

2.4.2 ClockBox

For systems of up to four boards, cronologic offers the ClockBox product that conveniently makes four clock
signals available inside the PC enclosure. For use with the TDC8HQ, jumper JP3 of the ClockBox must be set as
shown in Figure 2.5 in order to set the clock frequency to 10MHz.

CLK4 CLK5 CLK7 CLK6

JP3

JP4

JP7

Figure 2.5 ClockBox jumper setting for 10MHz.

2.4.3 Crates for multiple boards

Most PCmainboards don’t have enough PCIe slots to support six TDC8HQs. We offer an external enclosure
called “Ndigo Crate” that uses PCIe-over-cable technology to extend the number of available slots in a system. The
extension is fully transparent to the host system. There are no additional drivers required. Please see the product
page at our website www.cronologic.de.

10 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.cronologic.de/products/pcie/pcie-crates
https://www.cronologic.de/products/pcie/pcie-crates
www.cronologic.de
https://www.roentdek.com/

3 TDC8HQ Functionality

The TDC8HQ is a streaming time-to-digital converter. It records the timestamps of changes at the inputs A-H in
an infinite stream. A flexible grouping mode is available that can emulate common-start or common-stop behavior.
See Section 3.1 for details.

For each channel, it can be selected individually whether rising or falling edges are recorded. It is not possible
to record both edges at the same channel. The timestamps are recorded in integer multiples of a bin size of
5000/(3 × 128) = 13.02083 ps. There must be at least 5 ns between consecutive hits on the same input channel to
be detected reliably. The TDC8HQ records events without dead time at a readout rate of about 48MHits/s. For a
single channel, the maximum readout rate is about 12MHits/s.

3.1 Grouping and Events

In typical applications a start hit is followed by a multitude of stop hits. If grouping is enabled, the hits recorded
are managed in groups (which are called “events” in some applications).

Figure 3.1 Acquired hits are merged to groups as explained in the
text.

Figure 3.1 shows a corresponding timing diagram. The user can define the range of a group, i.e., the time window
within which hits on the stop channels are recorded. Hits occurring outside that time window are discarded.

The start and stop values for grouping can also be negative. This allows to configure the TDC8HQ for common-
start, common-stop, or for groups that extend into both directions.

The values are configured in ps.

−231 ≤ 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠𝑡𝑜𝑝 ≤ 231 − 1

In single-board setups, it is recommended to also configure the gating blocks (see Page 28) to similar parameters as
the grouping functionality. This prevents data from being read out that is discarded by the grouping code anyway.
Please note that the grouping parameters are given in pswhile the gating blocks are configured in cycles of the
150MHz clock. For more information on the gating functionality, see Section 3.3.4.

In grouping mode, each call to xHPTDC8_read_hits()will return a group of timestamps relative to some
trigger event. At the beginning of each group, an additional hit with channel number 255 is returned. This hit
contains the absolute time of the group. The absolute time of the remaining hits can be obtained by adding this

11 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

value to the relative time of each hit. Otherwise, the call returns all available timestamps as absolute timestamps
counting upwards from xHPTDC8_start_capture().

3.2 Auto-Triggering Function Generator

Some applications require internal periodic or random triggering. The TDC8HQ function generator provides this
functionality.

The delay between two trigger pulses of this trigger generator is the sum of two components: A fixed value𝑀 and
a pseudo-random value with a range given by the exponent𝑁.

The period is

𝑇 = 𝑀 + [1...2𝛮] − 1

clock cycles with a duration of 1/150MHz = 6.6 ns per clock cycle. Here, 6 ≤ 𝑀 < 232 and 0 ≤ 𝑁 < 32.

The trigger can be used as a source for the TiGer unit (see Section 3.3) .

3.3 Timing Generator (TiGer)

Each digital LEMO-00 input can be used as an AC coupled trigger output. The TiGer functionality can be
configured independently for each connector. See Section 4.5.5 for a full description of the configuration options.

Figure 3.2 shows how the TiGer blocks are connected. They can be triggered by an OR of an arbitrary combi-
nation of inputs, including the auto-trigger and the ADC. Each TiGer can drive its output to its corresponding
LEMO connector. This turns the connector into an output.

The TiGer outputs are AC coupled to the connector. They can be operated in one of the following modes:

XHPTDC8_TIGER_OFF
No signal is output to the connector.

XHPTDC8_TIGER_OUTPUT
In this mode the connector is output only. Pulses are unipolar with 2V amplitude. Connected hardware
must not drive any signals to connectors used as outputs, as doing so could damage both the TDC8HQ and
the external hardware. We recommend to only use short pulses to avoid undesirable baseline shift due to the
AC coupling, but the device does not pose any restrictions on the duty cycle. This mode can be used as a
clock output with a frequency of 75/𝑁MHz for integer𝑁.

XHPTDC8_TIGER_BIDI
In this mode the TiGer creates unipolar pulses with 1 V amplitude. The connector can still be used as an
input. Use short pulses to keep the probability of collision and the effect on the baseline low.

XHPTDC8_TIGER_BIPOLAR
In this mode the connector creates bipolar pulses with 1 V amplitude. The connector can still be
used as an input. Pulses have no effect on the baseline offset. TiGer should be configured with
𝑠𝑡𝑜𝑝 = 𝑠𝑡𝑎𝑟𝑡 for minimumwidth bipolar pulses of 2 × 6.6 ns. The maximum bipolar pulse width is
XHPTDC8_TIGER_MAX_BIPOLAR_PULSE_LENGTH = 15.

12 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

T
iG

er

trigger

trigger

trigger

trigger

trigger

trigger

trigger

auto

one

8x

tdc1_sync

tdc2_sync

tdc_ext_sync

adc1_cnv

A

H

8x

8x

T
iG

er

T
iG

er

8x

T
iG

er
8x

T
D

C
 A

T
D

C
 H

8x

adc2_cnv

negate

negate

negate

negate

of
fs

et

of
fs

et

T
iG

er

of
fs

et

TRG

ADC

TiGer[0..7] gating blocks

TiGer[8]

Figure 3.2 TiGer blocks can generate outputs that are also available
on inputs.

3.3.1 Trigger Sources

Trigger sources for TiGer and gating blocks are configured by a bit mask. You can combine any number of trigger
source with a bit-wise OR. The block will be trigger when any of the select trigger input is active.

XHPTDC8_TRIGGER_SOURCE_NONE
Empty pattern that selects no trigger source.

XHPTDC8_TRIGGER_SOURCE_A to _H
TDC LEMO inputs.

XHPTDC8_TRIGGER_SOURCE_TDC1_SYNC
Same as XHPTDC8_TRIGGER_SOURCE_TDC2_SYNC.
Clock signal with 150/1024MHz ≈ 146.5 kHz.

XHPTDC8_TRIGGER_SOURCE_TDC_EXT_SYNC
Clock signal with 125 kHz.

13 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

XHPTDC8_TRIGGER_SOURCE_AUTO
Periodic or random trigger pulses from the auto-trigger block.

XHPTDC8_TRIGGER_SOURCE_ADC1_CONV
Same as XHPTDC8_TRIGGER_SOURCE_ADC2_CONV. When there is an ADC trigger pulse on the TRG
connector, either of the two onboard ADCs is triggered in an unpredictable pattern. If the TRG input shall
be used as a trigger, the trigger sources must contain both ADC1_CNV and ADC2_CNV.

XHPTDC8_TRIGGER_SOURCE_SOFTWARE
Set for one clock cycle by a call to the driver function xhptdc8_software_trigger().

XHPTDC8_TRIGGER_SOURCE_ONE
Trigger that is active on every clock cycle.

14 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

3.3.2 TiGer Example: Generate 200 kHz Start Pulse

The AutoTrigger is used to generate a 200 kHz period. The TiGer generates a 200 kHz signal with 13.3 ns pulse
width on LEMO-00 output A.

1 // generate an internal 200 kHz trigger
2 config.auto_trigger_period = 750;
3 config.auto_trigger_random_exponent = 0;
4

5 // setup TiGer
6 config.tiger_block[0].mode = XHPTDC8_TIGER_BIPOLAR;
7 config.tiger_block[0].start = 0;
8 config.tiger_block[0].stop = config.tiger_block[0].start + 1;
9 config.tiger_block[0].negate = 0;
10 config.tiger_block[0].sources = XHPTDC8_TRIGGER_SOURCE_AUTO;
11

12 // configure offset such that a 1V pulse can be detected by input A
13 config.trigger_threshold[0] = XHPTDC8_P_THRESHOLD_NIM;

3.3.3 TiGer Example: Delayed Output from multiple sources

A trigger event on any channel B to D is used to generate a bipolar output pulse on channel A with configurable
delay.

1 config.tiger_block[0].mode = XHPTDC8_TIGER_BIPOLAR;
2 config.tiger_block[0].start = 20;
3 config.tiger_block[0].stop = config.tiger_block[0].start + 1;
4 config.tiger_block[0].negate = 0;
5 // an event on any of the channels B - D starts the TiGer
6 config.tiger_block[0].sources = XHPTDC8_TRIGGER_SOURCE_B|↩

XHPTDC8_TRIGGER_SOURCE_C|XHPTDC8_TRIGGER_SOURCE_D;

3.3.4 Triggering the ADC with the TiGer

There is a ninth TiGer that is connected to the trigger input (TRG, see Figure 2.1) of the ADC. See Section 3.5 for
additional information on the ADC.

With re-trigger enabled, the ADCTiGer can be used to periodically sample ADC data. The period should be no
shorter than 300 ns or 45 TiGer clocks.

The ADCTiGer can also be used to sample voltages at a time relative to one of the TDC inputs. In this case,
stop should be set to at least 45 to ensure that the sample period criterion is met even when pulses arrive in quick
succession. A typical application would be to sample some slow control voltage once per start signal.

15 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

3.4 Gating

Each TDC channel has a second, identical TiGer block that functions as a gate as shown in Figure 3.2. In the
driver configuration structure (see Section 4.5.6), these are accessible as gating_block[channel].

Hits in a channel are only recorded while the gating block is open, which is configured byGate Start,Gate Stop,
negate, and retrigger. Gate Start,Gate Stop, and retrigger manipulate when the gate is active or inactive; negate
manipulates if the gate is open while it is active or while it is inactive. If negate is false, the gate is open while its
output is active. If negate is true, the gate is closed while its output is active.

If re-triggering is enabled, the timer of the gate is reset when a second trigger event is recorded while the gate
is active, i.e., the time while the gate is active is extended. If the second trigger event is recorded before the gate
activates, the gate-timer is reset to zero, i.e., it will take the wholeGate Start time until the gate activates. If
re-triggering is disabled, all secondary trigger events will be ignored until theGate Stop time is reached.

An overview of different combinations of retrigger and negate is shown in Figure 3.3.

Trigger

Signal

Gate closed open closed

out PKT

Gate closed open closed

out PKT PKT

Gate open closed open

out PKT PKT

Gate open closed open

out PKT

Gate Start

Gate Stop

Stop minus Start

Stop minus Start

re
tr

ig
ge

r
ne

ga
te

ne
ga

te

re
tr

ig
ge

r

Figure 3.3 Principle of a gating block. Packets (PKT) are only
recorded while the gate is open. Gate Start,Gate Stop,
retrigger, and negate influence when that is the case.

Gating is a useful feature in setups where the trigger creates a lot of noise. A suitable configuration of the gat-
ing block can reduce the bandwidth and buffer usage significantly. Gating is performed before the L0 buffer.
Grouping is performed in software after readout.

Note that the gating logic is not instant but takes about six to seven clock cycles due to board-internal signal
processing. This means that there is a constant offset between the time an external trigger event is detected and
the time the gating logic is enabled of up to about 50 ns. This offset does not exist if the (internal) auto-trigger
functionality is utilized.

When setting up the gating range, it is recommended to conservatively choose the range (i.e., choose a bigger range
than ultimately necessary). This is because at the edges of the gate, it is possible to create timestamps that do not
correspond to a real signal edge due to how the gating logic is implemented: The gate stores the state of the input
channel from the last time the gate was active and updates the state once the gate is re-enabled. This update may be

16 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

interpreted as an edge, at which point a timestamp is created that does not necessarily correspond to a real edge of
an input signal (see also Figure 3.4). However, timestamps of signals that are not spanning over the edge of the gate
will always be correct.

Trigger

Signal

Gate closed open closed

out PKT PKT

Timestamp not corresponding to signal edge Correct Timestamp

Gate Start Stop minus Start

Gate Stop

Figure 3.4 Example of a gating configuration that can lead to time-
stamps that do not correspond to a signal edge at the
gate-edges. The gate keeps the last state from when it
was active (low signal level in the example) and updates
it once it re-activates (high signal level) which may be
recorded as an edge.

3.5 Triggerable ADC

The TDC8HQ is equipped with a triggerable ADC.Whenever there is a rising edge on the ADC trigger connector
(TRG, see Figure 2.1), the voltage on the ADC input connector is sampled. The result is inserted as a packet with a
timestamp and an ADC value into the readout data stream. The timing resolution of the timestamp is 833 ps.

TRG is also connected to the output of a TiGer block. This can be used to trigger the ADC periodical or relative
to one of the TDC inputs as described in Section 3.3.4

The ADC triggers should be separated by at least 300 ns.

The width of the ADC input pulse should be larger than 13.2 ns and smaller than 35 ns.

There are two interleaved ADCs to ensure that there is always an ADC available even during readout. This is
exposed to the user both in the output data format and in the TiGer and Gating trigger sources. When using the
ADC trigger as a trigger for Gating or TiGer, both trigger sources shall be set to the same value. During readout,
the user shall not distinguish between data from the two ADCs unless advanced calibration is desired for the ADC
data. In that case, the two ADCs should be treated separately.

17 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

4 Driver Programming API

The API is a DLL with C linkage.

The functions provided by the driver are declared in xHPTDC8_interface.hwhich must be included by your
source code. You must tell your compiler to link with the file xhptdc8_driver.lib or the corresponding 64
bit version xhptdc8_driver_64.lib. When running your program the dynamic link library containing the
actual driver code must reside in the same directory as your executable or be in a directory included in the PATH
variable. For Linux, it is provided only as a static library libxtdc4_driver.aThe file for the DLL is called
xTDC4_driver_64.dll.

All these files are provided with the driver installer that can be downloaded from our product website www.roent-
dek.com. By default, the installer will place the files into the directory C:\Program Files\cronologic\
TDC8HQ\driver. Please contact RoentDek for coding examples.

4.1 Constants

#define XHPTDC8_MANAGER_DEVICES_MAX 6
The maximum number of boards supported by the device manager.

#define XHPTDC8_TDC_CHANNEL_COUNT 8
The number of TDC input channels.

#define XHPTDC8_GATE_COUNT 8
The number of gating blocks. One for each TDC input.

#define XHPTDC8_TIGER_COUNT 9
The number of timing generators. One for each TDC input and one for the ADC trigger.

#define XHPTDC8_TRIGGER_COUNT 16
The number of potential trigger sources for the timing generators. One for each TDC input plus some
specials. See Section 4.5.4 for details.

#define XHPTDC8_OK 0
Error codes are set by the API functions to this value if there has been no error. Other error codes can be
found in xHPTDC8_interface.h

4.2 Driver Information

Even if there is no board present the driver revision can be queried using these functions.

int xhptdc8_get_driver_revision()
Returns the driver version, same format as xhptdc8_static_info.driver_revision. This function
does not require a TDC8HQ board to be present.

const char* xhptdc8_get_driver_revision_str()
Returns the driver version including SVN build revision as a string.

18 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com
https://www.roentdek.com
https://www.roentdek.com/

int xhptdc8_count_devices(int *error_code, char **error_message)
Returns the number of boards present in the system that are supported by this driver. Pointers to an error
code and message variable have to be provided. If error_code does not equal #define XHPTDC8_OK =
0, the error message will contain what went wrong. E.g., the crono kernel was not properly installed.

4.3 Initialization

The card must be initialized first before reading data. Normally the process is to get the default initialization
parameters and change some values. E.g., choose one of multiple cards by the index or use a larger buffer.

int xhptdc8_get_default_init_parameters(xhptdc8_manager_init_parameters *init)
Sets up the standard parameters. Gets a set of default parameters for xhptdc8_init(). This must al-
ways be used to initialize the xhptdc8_manager_init_parameters structure before modifying it and
passing it to xhptdc8_init.

int xhptdc8_init(xhptdc8_manager_init_parameters *params)
Opens and initializes the TDC8HQ boards in the system.
If the return value does not equal #define XHPTDC8_OK = 0 the device initialization failed. The
parameter params is a pointer to a structure of type xhptdc8_manager_init_parameters that must
be completely initialized by get_default_init_parameters().

int xhptdc8_close()
Closes the devices, releasing all resources.

4.3.1 Structure xhptdc8_manager_init_parameters

int version = XHPTDC8_API_VERSION;
The version number. Must be set to XHPTDC8_API_VERSION.

uint64_t buffer_size = XHPTDC_DEFAULT_BUFFER_SIZE; // 0x1000000 (16 MB)
The minimum size of the DMA buffer.
If set to 0 the default size of 16MByte is used.

int variant = 0;
Set to 0. Can be used to activate future device variants such as different base frequencies.

int device_type = CRONO_DEVICE_XHPTDC8;
A constant for the different devices of cronologic CRONO_DEVICE_*.
Initialized by xhptdc8_get_default_init_parameters(). This value is identical to the PCI Device
ID. Must be left unchanged.

#define CRONO_DEVICE_HPTDC 0x1

#define CRONO_DEVICE_NDIGO5G 0x2

#define CRONO_DEVICE_NDIGO250M 0x4

#define CRONO_DEVICE_xTDC4 0x6

#define CRONO_DEVICE_TIMETAGGER4 0x8

#define CRONO_DEVICE_XHPTDC8 0xC

#define CRONO_DEVICE_NDIGO6 0xD

19 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

int dma_read_delay = 250;
The update delay of the write pointer after a packet has been sent over PCIe. Specified in multiples of 16 ns.
Should not be changed by the user.

crono_bool_t multiboard = false;
Set if multiple devices shall be synchronized. Also sets the clock source to external.

crono_bool_t use_ext_clock = false;
If set use the external 10MHz reference on J2, otherwise the internal clock source is used. When
multiboard is set, this parameter is ignored and the external clock is used.

crono_bool_t ignore_calibration = false;
Leave at false to use device calibration data.

4.4 Status Information

4.4.1 Functions for Information Retrieval

The driver provides functions to retrieve detailed information on the board type, its configuration, settings, and
state. The information is split according to its scope and the computational requirements to query the information
from the board.

The information is provided on a per board basis. The parameter index selects which board is queried.

int xhptdc8_get_device_type(int index)
Returns the type of the device as CRONO_DEVICE_XHPTDC8.

const char* xhptdc8_get_last_error_message(int index)
Returns most recent error message. If index is negative the last error message from the
xhptdc8_manager is returned. Otherwise, the last error message of the selected board is returned.

int xhptdc8_get_fast_info(int index, xhptdc8_fast_info *info)
Returns fast dynamic information.
This call gets a structure that contains dynamic information that can be obtained within a fewmicrosec-
onds.

int xhptdc8_get_param_info(int index, xhptdc8_param_info *info)
Returns configuration changes.
Gets a structure that contains information that changes indirectly due to configuration changes.

int xhptdc8_get_static_info(int index, xhptdc8_static_info *info)
Contains static information.
Gets a structure that contains information about the board that does not change during run time.

int xhptdc8_get_pcie_info(int index, crono_pcie_info *pcie_info)
Read PCIe information.
Gets a structure that contains information about the PCIe state, like correctable or uncorrectable errors.

int xhptdc8_clear_pcie_errors(int index, int flags)
Clear PCIe errors.

20 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

Only useful for PCIe debugging. flags is one of the following:

#define CRONO_PCIE_CORRECTABLE_FLAG 1

#define CRONO_PCIE_UNCORRECTABLE_FLAG 2

int xhptdc8_get_temperature_info(int index, xhptdc8_temperature_info *info)
Get temperature measurements frommultiple sources on the board.

int xhptdc8_get_clock_info(int index, xhptdc8_clock_info *info)
Get information on clocking configuration and status.

const char* xhptdc8_device_state_to _str(int state)
Convert the state value from xhptdc8_fast_info.state into a human-readable string.

4.4.2 Structure xhptdc8_static_info

This structure contains information about the board that does not change during run time. It is provided by the
function xhptdc8_get_static_info().

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment can be
larger than one to match driver version numbers or similar.

int board_id
ID of the board.
All TDC8HQ boards in the system are numbered in the order of their serial numbers starting at zero.
Channel A of a board has channel number 𝑖𝑛𝑑𝑒𝑥 × 10.

int driver_revision
Encoded version number for the driver.
The lower three bytes contain a triple-level hierarchy of version numbers, e.g., 0x010103 encodes version
1.1.3.
The version adheres to the Semantic Versioning scheme as defined at https://semver.org. A change in
the first digit generally requires a recompilation of user applications. Changes in the second digit denote
significant improvements or changes that don’t break compatibility and the third digit increments with
minor bug fixes and similar updates that do not affect the API.

int driver_build_revision
Build number of the driver according to cronologic’s internal versioning system.

int firmware_revision
Revision number of the FPGA configuration.

int board_revision
Board revision number.
The board revision number can be read from a register. It is a four-bit number that changes when the
schematic of the board is changed. This should match the revision number printed on the board.

21 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://semver.org
https://www.roentdek.com/

int board_configuration
Describes the schematic configuration of the board.
The same board schematic can be populated in multiple variants. This is an 8-bit code that can be read from
a register.

int subversion_revision
Subversion revision ID of the FPGA configuration source code.

int chip_id[2]
16 bit factory ID for each of the TDC chips.

int board_serial
Serial number.
Year and running number are concatenated in 8.24 format. The number is identical to the one printed on
the silvery sticker on the board.

uint32_t flash_serial_high
uint32_t flash_serial_low

64-bit manufacturer serial number of the flash chip

crono_bool_t flash_valid
If not 0, the driver found valid calibration data in the flash on the board and is using it. This value is not
applicable for the TDC8HQ.

char calibration_date[20]
DIN EN ISO 8601 string YYYY-MM-DDHH:MM of the time when the card was calibrated.

4.4.3 Structure xhptdc8_param_info

This structure contains configuration changes provided by xhptdc8_get_param_info().

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment can be
larger than one to match driver version numbers or similar.

double binsize
Bin size (in ps) of the measured TDC data.

int channels
Number of TDC channels of the board.
Fixed at 8.

int channel_mask
Bit assignment of each enabled input channel.
Bit 0 ≤ 𝑛 < 8 is set if channel 𝑛 is enabled.

int64_t total_buffer
The total amount of DMA buffer in bytes.

22 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

4.4.4 Structure xhptdc8_fast_info

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment can be
larger than one to match driver version numbers or similar.

int fpga_rpm
Speed of the FPGA fan in rounds per minute. Reports 0 if no fan is present.

int alerts
Alert bits from the temperature sensor and the systemmonitor. Bit 0 is set if the TDC temperature exceeds
140 °C. In this case the TDC did shut down and the device needs to be reinitialized.

int pcie_pwr_mgmt
Always 0.

int pcie_link_width
Number of PCIe lanes the card uses. Should always be 10 for the TDC8HQ.

int pcie_max_payload
Maximum size in bytes for one PCIe transaction. Depends on system configuration.

int state
Current state of the TDC8HQ.

const static int XHPTDC8_DEVICE_STATE_CREATED 0

const static int XHPTDC8_DEVICE_STATE_INITIALIZED 1

const static int XHPTDC8_DEVICE_STATE_CONFIGURED 2

const static int XHPTDC8_DEVICE_STATE_CAPTURING 3

const static int XHPTDC8_DEVICE_STATE_PAUSED 4

const static int XHPTDC8_DEVICE_STATE_CLOSED 5

4.4.5 Structure crono_pcie_info

uint32_t pwr_mgmt
Organizes power supply of PCIe lanes.

uint32_t link_width
Number of PCIe lanes that the card uses.

uint32_t max_payload
Maximum size in bytes for one PCIe transaction.
Depends on the system configuration.

uint32_t link_speed
Data rate of the PCIe card.
Depends on the system configuration.

23 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

uint32_t error_status_supported
Different from 0 if the PCIe error status is supported for this device.

uint32_t correctable_error_status
Correctable error status flags, directly from the PCIe config register.
Useful for debugging PCIe problems.

#define CRONO_PCIE_RX_ERROR 1 << 0

#define CRONO_PCIE_BAD_TLP 1 << 6

#define CRONO_PCIE_BAD_DLLP 1 << 7

#define CRONO_PCIE_REPLAY_NUM_ROLLOVER 1 << 8

#define CRONO_PCIE_REPLAY_TIMER_TIMEOUT 1 << 12

#define CRONO_PCIE_ADVISORY_NON_FATAL 1 << 13

#define CRONO_PCIE_CORRECTED_INTERNAL_ERROR 1 << 14

#define CRONO_PCIE_HEADER_LOG_OVERFLOW 1 << 15

uint32_t correctable_error_status
Uncorrectable error status flags, directly from the PCIe config register.
Useful for debugging PCIe problems.

#define CRONO_PCIE_UNC_UNDEFINED 1 << 0

#define CRONO_PCIE_UNC_DATA_LINK_PROTOCOL_ERROR 1 << 4

#define CRONO_PCIE_UNC_SURPRISE_DOWN_ERROR 1 << 5

#define CRONO_PCIE_UNC_POISONED_TLP 1 << 12

#define CRONO_PCIE_UNC_FLOW_CONTROL_PROTOCOL_ERROR 1 << 13

#define CRONO_PCIE_UNC_COMPLETION_TIMEOUT 1 << 14

#define CRONO_PCIE_UNC_COMPLETER_ABORT 1 << 15

#define CRONO_PCIE_UNC_UNEXPECTED_COMPLETION 1 << 16

#define CRONO_PCIE_UNC_RECEIVER_OVERFLOW_ERROR 1 << 17

#define CRONO_PCIE_UNC_MALFORMED_TLP 1 << 18

#define CRONO_PCIE_UNC_ECRC_ERROR 1 << 19

#define CRONO_PCIE_UNC_UNSUPPROTED_REQUEST_ERROR 1 << 20

4.4.6 Structure xhptdc8_temperature_info

This structure provides the values of temperature measurements of various chips on the board.

int size
The number of bytes occupied by the structure.

24 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

int version
A version number that is increased when the definition of the structure is changed. The increment can be
larger than one to match driver version numbers or similar.

float tdc[2]
Temperature for each of the TDC chips in °C.

4.4.7 Structure xhptdc8_clock_info

This structure provides information about the clock network of the device.

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment can be
larger than one to match driver version numbers or similar.

crono_bool_t cdce_locked
Set if the jitter cleaning PLL clock synthesizer achieved lock.

int cdce_version
Version information from the CDCE62005 clock synthesizer.

crono_bool_t use_ext_clock
Source for the clock synthesizer is usually the 10MHz onboard oscillator. During initialization, alter-
natively an external clock on J2 can be selected. When multiple boards are synchronized all board use a
common external clock. See section 2.4 for details.

crono_bool_t fpga_locked
Set if the FPGA data-path PLL achieved lock.

4.5 Configuration

All TDC8HQ boards in the system are configured by a single configuration structure which in turn contains sub
structures that configure the individual boards. The user should first obtain a structure that contains the default
settings of the device read from an on-board ROM, then modify the structure as needed for the user application
and use the result to configure the device.

int xhptdc8_configure(xhptdc8_manager_configuration *config)
Configures the xhptdc8_manager.

int xhptdc8_get_current_configuration(xhptdc8_manager_configuration *config)
Gets current configuration. Copies the current configuration to the specified config pointer.

int xhptdc8_get_default_configuration(xhptdc8_manager_configuration *config)
Gets default configuration. Copies the default configuration to the specified config pointer.

25 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

4.5.1 YAML config files

There exist a community maintained utility library for the TDC8HQ that contains a convenience function that
can modify configuration structures from a YAML config string. This can significantly shorten code required to
set up the TDC.

See github.com/cronologic-de/xhptdc8_babel/tree/main/util for details.

4.5.2 Structure xhptdc8_manager_configuration

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment can be
larger than one to match driver version numbers or similar.

xhptdc8_device_configuration device_configs[XHPTDC8_DEVICES_MAX]
A structure with the configuration for an individual TDC8HQ board as defined in section 4.5.3. Use
the function xhptdc8_count_devices() to query howmany entries contain valid information. See
Section 4.2 for details on the function.

xhptdc8_grouping_configuration grouping
Structure with the parameters for grouping.
See Section 4.5.8 for the definition of the structure and Section 3.1 for more information on grouping.

int64_t *bin_to_ps(int64_t)
Reserved for future use.

4.5.3 Structure xhptdc8_device_configuration

This is the structure containing the configuration information. It uses multiple substructures to configure various
aspects of the board.

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment can be
larger than one to match driver version numbers or similar.

int auto_trigger_period = 300000000;
int auto_trigger_random_exponent = 0;

Create a trigger either periodically or randomly. There are two parameters

𝑀 = auto_trigger_period
𝑁 = random_exponent

that result in a distance between triggers of 𝑇 clock cycles.

𝑇 = 1 +𝑀 + [1...2𝛮]
0 ≤ 𝑀 < 232

0 ≤ 𝑁 < 32

26 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://github.com/cronologic-de/xhptdc8_babel/tree/main/util
https://www.roentdek.com/

There is no enable or reset. The auto-trigger is running continuously. The usage of this trigger can be
configured in the TiGer block source field.

double trigger_threshold[XHPTDC8_TDC_CHANNEL_COUNT] = -0.35;
Set the threshold voltage for the input channels A …H (see Figure 4.1).
The supported range is −1.32 to 1.18V. This should be close to 50% of the height of the input pulse.
Examples for various signaling standards are defined as follows.

#define XHPTDC8_THRESHOLD_P_NIM +0.35

#define XHPTDC8_THRESHOLD_P_CMOS +1.18

#define XHPTDC8_THRESHOLD_P_LVCMOS_33 +1.18

#define XHPTDC8_THRESHOLD_P_LVCMOS_25 +1.18

#define XHPTDC8_THRESHOLD_P_LVCMOS_18 +0.90

#define XHPTDC8_THRESHOLD_P_TTL +1.18

#define XHPTDC8_THRESHOLD_P_LVTTL_33 +1.18

#define XHPTDC8_THRESHOLD_P_LVTTL_25 +1.18

#define XHPTDC8_THRESHOLD_P_SSTL_3 +1.18

#define XHPTDC8_THRESHOLD_P_SSTL_2 +1.18

#define XHPTDC8_THRESHOLD_N_NIM -0.35

#define XHPTDC8_THRESHOLD_N_CMOS -1.32

#define XHPTDC8_THRESHOLD_N_LVCMOS_33 -1.32

#define XHPTDC8_THRESHOLD_N_LVCMOS_25 -1.25

#define XHPTDC8_THRESHOLD_N_LVCMOS_18 -0.90

#define XHPTDC8_THRESHOLD_N_TTL -1.32

#define XHPTDC8_THRESHOLD_N_LVTTL_33 -1.32

#define XHPTDC8_THRESHOLD_N_LVTTL_25 -1.25

#define XHPTDC8_THRESHOLD_N_SSTL_3 -1.32

#define XHPTDC8_THRESHOLD_N_SSTL_2 -1.25

The inputs are AC coupled. Thus, the absolute voltage is not important for pulse inputs. It is the relative
pulse amplitude that causes the input circuits to switch. The parameter must be set to the relative switching
voltage for the input standard in use. If the pulses are negative, a negative switching threshold must be set
and vice versa.

27 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

D
A
C

+

-50

trigger_threshold[i]

Figure 4.1 Input circuit for each of the input channels.

xhptdc8_trigger trigger[XHPTDC8_TRIGGER_COUNT]
Configuration of the polarity of the external trigger sources (see Section 4.5.4). These are used as inputs for
the TiGer blocks and as inputs to the time measurement unit.

xhptdc8_tiger_block tiger_block[XHPTDC8_TIGER_COUNT]
Configuration of the timing generators (TiGer, see Section 4.5.5).
Indices 0 through 7 refer to channels A through H; index 8 to channel TRG.

xhptdc8_tiger_block gating_block[XHPTDC8_GATE_COUNT]
Configuration of the gating blocks.

xhptdc8_channel channel[XHPTDC8_TDC_CHANNEL_COUNT]
Configuration of the TDC channels.

xhptdc8_adc_channel adc_channel
Configuration of the ADC channel.

crono_bool_t skip_alignment = false;
If set, the phase of the two TDC chips is not realigned when capturing is restarted.

int alignment_source = 1;
Define a signal source that is used for phase alignment. Should usually be left unchanged.

#define XHPTDC8_ALIGN_TIGER 0

#define XHPTDC8_ALIGN_PIN 1

#define XHPTDC8_ALIGN_RESERVED 2

int alignment_off_state = 0;
Select TDC alignment pin state when not in use.

0 GND

1 VCCIO

2 high-Z

4.5.4 Structure xhptdc8_trigger

For each input, this structure determines whether rising or falling edges on the inputs create trigger events for the
TiGer and gating blocks.

28 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

crono_bool_t falling = true;
crono_bool_t rising = false;

Select for which edges a trigger event is created inside the FPGA. While the TDC can only measure either
rising or falling edges, the gating blocks and the TiGer are more flexible. Set the corresponding flag for one
of the edges or both edges when using the input with a TiGer or gating block.

4.5.5 Structure xhptdc8_tiger_block

See Section 3.3 for additional information.

int mode = 0;
Enables the desired mode of operation for the tiger.

#define XHPTDC8_TIGER _OFF 0 No operation

#define XHPTDC8_TIGER _OUTPUT 1 Output is driven with 2V amplitude.

There must be no input connected

#define XHPTDC8_TIGER _BIDI 2 Output is driven with 1V amplitude.

Pulse rate should be low.

#define XHPTDC8_TIGER _BIPOLAR 3 Output is driven with 1V bidirectional pulses.

start = stop − 1

The gating blocks are only used internally and produce no pulses accessible to the user. Gating blocks
interpret any value that is not 0 as enable.

#define XHPTDC8_GATE _OFF 0 No gating, all hits are captured.

#define XHPTDC8_GATE _ON 1 No hits are captured while the gate is inactive.

crono_bool_t negate = false;
Inverts output polarity. Default is set to false.
For gating blocks, a value of false enables inputs between start and stop, a value of true blocks outputs
inside that interval. The TiGer creates a high pulse from start to stop unless negated.

crono_bool_t retrigger = false;
Enables re-trigger setting.
If enabled the timer is reset to the value of the start parameter, whenever the input signal is set while waiting
to reach the stop time.

crono_bool_t extend = true;
Not implemented.

uint32_t start = 0;
uint32_t stop = 1000;

In multiples of 20/3 ns = 6.666 ns The time during which the TiGer output is set, relative to the trigger
input.
For gating blocks, there is a constant offset of about six to seven cycles between start/stop and the time an
external input signal is detected (see also Section 3.3.4).
The parameters start and stopmust fulfill the following conditions

0 ≤ start ≤ stop ≤ 216 − 1 .

29 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

If retriggering is enabled, the timer is reset to the value of the start parameter whenever the input signal is set
while waiting for the stop time.

int sources = 0x00000001;
A bit mask with a bit set for all trigger sources that can trigger this TiGer block. Default is
XHPTDC8_TRIGGER_SOURCE_A.

#define XHPTDC8_TRIGGER_SOURCE_NONE 0x00000000

#define XHPTDC8_TRIGGER_SOURCE_A 0x00000001

#define XHPTDC8_TRIGGER_SOURCE_B 0x00000002

#define XHPTDC8_TRIGGER_SOURCE_C 0x00000004

#define XHPTDC8_TRIGGER_SOURCE_D 0x00000008

#define XHPTDC8_TRIGGER_SOURCE_E 0x00000010

#define XHPTDC8_TRIGGER_SOURCE_F 0x00000020

#define XHPTDC8_TRIGGER_SOURCE_G 0x00000040

#define XHPTDC8_TRIGGER_SOURCE_H 0x00000080

#define XHPTDC8_TRIGGER_SOURCE_TDC1_SYNC 0x00000100

#define XHPTDC8_TRIGGER_SOURCE_TDC2_SYNC 0x00000200

#define XHPTDC8_TRIGGER_SOURCE_TDC_EXT_SYNC 0x00000400

#define XHPTDC8_TRIGGER_SOURCE_ADC1_CONV 0x00000800

#define XHPTDC8_TRIGGER_SOURCE_ADC2_CONV 0x00001000

#define XHPTDC8_TRIGGER_SOURCE_SOFTWARE 0x00002000

#define XHPTDC8_TRIGGER_SOURCE_AUTO 0x00004000

#define XHPTDC8_TRIGGER_SOURCE_ONE 0x00008000

4.5.6 Structure xhptdc8_channel

Contains TDC channel settings.

crono_bool_t enable = false;
Enable the TDC channel.

crono_bool_t rising = false;
Select which edge of the signal is measured by the TDC. The TiGer and gating blocks use a separate
configuration that allows to use both edges simultaneously on each input (see Section 4.5.4).

4.5.7 Structure xhptdc8_adc_channel

This structure configures the ADC input and the corresponding trigger input. See section 3.5.

crono_bool_t enable = false;
Enable acquisition of ADC data.

30 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

crono_bool_t watchdog_readout = false;
Include periodic ADCmeasurements in the output data. Watchdog measurements do not inhibit ADC
triggers occurring at the same time.

int watchdog_interval = 6144;
Number of 150-MHz clock cycles within one watchdog period.

100 ≤ watchdog_interval ≤ 7500

double trigger_threshold = -0.35;
Threshold voltage for the TRG input. See the description for the channel.trigger_threshold in
Section 4.5.3.

4.5.8 Structure xhptdc8_grouping_configuration

This structure configures the behavior of the grouping functionality (see Section 3.1).

In this structure intervals are always provided in picoseconds, independently of the bin size of the TDC.

crono_bool_t enabled = false;
Enable grouping.

int trigger_channel = 0;
Channel number that is used to trigger the creation of a group.

uint64_t trigger_channel_bitmask = 0ull;
Use this to define additional trigger channels. There is an OR-disjunction with the trigger_channel.

int zero_channel = -1;
Optionally a different channel can be used to calculate the relative timestamps in a group. This is disabled
per default by setting this parameter to -1.

int64_t zero_channel_offset = 0;
This offset in picoseconds is added to relative timestamps within a group.

int64_t range_start = -1500;
Start of group range relative to the trigger_channel.

int64_t range_stop = 1500;
End of group range relative to the trigger_channel.
Values in the interval from range_start to range_stop are included in the group. Either or both values
can be negative to create common-stop behavior.

−263 ≤ range_start ≤ range_stop < 263

int64_t trigger_deadtime = 0;
After a trigger was detected additional triggers will be suppressed for this interval. Must not be negative.

uint64_t window_hit_channels = 0ull;
Set a bitmask of channels. A group is only created, if there is at least one hit in the windows defined by
window_start and window_stop. Usage is equivalent to trigger_channel_bitmask.

int64_t window_start = 0;
int64_t window_stop = grouping.window_start + 1;

−263 ≤ window_start ≤ window_stop < 263

31 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

int veto_mode = 0;
Awindow defined by veto_start and veto_stop can be used to suppress hits. The functionality is very
similar to the gating blocks but is defined in software. While gating blocks can only work locally on the
information available within each board the veto function is applied globally across all boards. This feature
cannot be used to improve FIFO usage or PCIe bandwidth usage.
Either data inside or outside the veto window can be suppressed.

#define XHPTDC8_GROUPING_VETO_OFF 0

#define XHPTDC8_GROUPING_VETO_INSIDE 1

#define XHPTDC8_GROUPING_VETO_OUTSIDE 2

int64_t veto_start = 0;
int64_t veto_stop = 0;

−263 ≤ veto_start ≤ veto_stop < 263

uint64_t veto_active_channels = 0xffffffffffffffffull;
If veto is enabled, veto filtering is active for channels defined by a channel bitmask. As default, filtering is
active for all channels.

crono_bool_t veto_relative_zero = false;
If set, the veto window is defined relative to the zero channel. Otherwise, the window is defined relative to
the trigger.

crono_bool_t ignore_empty_events = false;
Discard groups which contained only a trigger signal.

crono_bool_t overlap = false;
Unsupported, must remain false.

4.6 User Data Storage

There is a 64 kByte flash memory on each board that users can utilize to store any type of data. A typical use case
would be calibration data for the TDC8HQ or the detectors that the device is connected to. Also, serial numbers
of instruments built with the TDC8HQ can be stored here. Write operations always erase the whole memory
block.

#define XHPTDC8_USER_FLASH_SIZE 0x10000
The size of the flash memory in bytes.

int xhptdc8_read_user_flash(int index, uint8_t* flash_data, uint32_t size)
int xhptdc8_write_user_flash(int index, uint8_t* flash_data, uint32_t size)

Read from or write to the user flash of a board identified by index. flash_datamust point to a buffer
allocated by the user. sizemust specify the size of that buffer in bytes. We recommend to always allocate a
buffer of the size of the flash memory given by XHPTDC8_FLASH_SIZE to clarify that always the full buffer
is overwritten.

32 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

5 Run Time Control

5.1 Controlling the State of the Driver

Once the devices are configured the following functions can be used to control the behavior of the devices. All of
these functions return quickly with very little overhead, but they are not guaranteed to be thread safe.

int xhptdc8_start_capture()
Start data acquisition.

int xhptdc8_pause_capture()
Pause a started data acquisition. Pause and continue have less overhead than start and stop but don’t allow
for a configuration change.

int xhptdc8_continue_capture()
Call this to resume data acquisition after a call to xhptdc8_pause_capture(). Pause and continue have
less overhead than start and stop but don’t allow for a configuration change.

int xhptdc8_stop_capture()
Stop data acquisition.

int xhptdc8_start_tiger(int index)
int xhptdc8_stop_tiger(int index)

Start and stop the timing generator of an individual board. This can be done independently of the state of
the data acquisition.

int xhptdc8_software_trigger(int index)
Sets the software trigger for one clock cycle. This can be configured for the TiGer and for the gating blocks
as trigger-source XHPTDC8_TRIGGER_SOURCE_SOFTWARE.

5.2 Readout

int xhptdc8_read_hits(TDCHit *hit_buf, size_t size)
Read a multitude of hits into a buffer provided by the user. Returns the number of read hits.
If grouping is enabled a single group is read. If the group is too large for the buffer the remaining hits of the
group are discarded.
If grouping is disabled, all available data is read up to the size of the buffer.
The method always returns immediately. If no hits are read, it is beneficial to call sleep() or yield the CPU
to another process instead of trying again immediately.
Make sure to set size to the number of elements that fit into the buffer.
This function is not thread-safe. If you want to process the read data in multiple threads the data needs to be
copied to a separate buffer for each thread.

int xhptdc8_get_current_timestamp(int index, int64_t *timestamp)
Return current internal timestamp counter value of the selected TDC8HQ in picoseconds.

33 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

6 Output Data Format

6.1 Memory Management

The host buffer is memory on the host’s system in which the data recorded by the TDC8HQ is stored until it is
acknowledged by the user.

The host buffer is managed by the DMA (direct memory access) driver. The DMA driver can only ever write to the
host buffer if enough memory is free. That means, new packets will never overwrite old packets, unless they have
been acknowledged.

If the host buffer is full, data may be lost. Then, the CRONO_PACKET_FLAG_HOST_BUFFER_FULL bit of
crono_packet::flags is set. To ensure that this does not happen, the user must acknowledge pack-
ets fast enough by the analysis software. Note that data only has been lost due to a full host buffer if the
CRONO_PACKET_FLAG_TRIGGER_MISSED bit of crono_packet::flags is set.

6.1.1 Acknowledge Packets

A packet in the host buffer will only be overwritten if it has been acknowledged. This can be done manually
by the user by calling ndigo_acknowledge() or automatically by the driver if in the call of ndigo_read(),
acknowledge_last_read of the ndigo_read_in structure inwas set to true (see Section 5).

Acknowledging a packet acknowledges all previous packets as well.

Be aware that acknowledging a packet immediately invalidates it, and it immediately becomes unsafe to attempt
accessing its content.

6.1.2 TDC8HQ-Internal Memory Layout

The TDC8HQ uses internal FIFO (first-in, first-out) memories. In one of these FIFOs, referred to as the DMA
FIFO, packets that are ready to be sent to the host system are buffered. If the DMA FIFO is full at any point, the
affected packets CRONO_PACKET_FLAG_DMA_FIFO_FULL bit of crono_packet::flags is set. This does not
mean that data has been necessarily lost. Only if the
CRONO_PACKET_FLAG_TRIGGER_MISSED bit is set has data been lost. For each measured edge, the TDC8HQ
creates a 12-byte data structure TDCHit that contains a 64-bit timestamp in picoseconds and three fields with
additional information.

6.2 Structure TDCHit

int64_t time
The timestamp of the hit in picoseconds.
If grouping is disabled the timestamps are continuously counting up from the call to
xhptdc8_start_capture().
If grouping is enabled the timestamps are relative to the trigger or the separate zero reference of the group.
The first TDCHit of a group has channel number 255 and provides the absolute time of the group. The
absolute time of each of the hits can be obtained by adding this value to each of the relative timestamps.

34 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

uint8_t channel
For the first board in the system, this is 0 to 7 for the TDC channels A to H, or 8 to 9 for ADC data. Data
from channels 8 and 9 should usually be treated as data from the same channel. For the other boards, the
channel number is incremented by board_id × 10. In grouping mode, the first hit of each group has
channel number 255 and contains the absolute time of the group.

uint8_t type
Additional information on the type of hit recorded (see Section 6.2.1).

uint16_t bin
For ADC hits this contains the sampled voltage. For TDC hits the content is undefined.

6.2.1 TDCHit Types

Type information for TDC measurements

If the hit is a TDCmeasurement on channels A to H the following flags are defined for the type field of the
TDCHit structure:

#define XHPTDC8_TDCHIT_TYPE_RISING 0x01
Rising edge

#define XHPTDC8_TDCHIT_TYPE_ERROR 0x02
any type of error

#define XHPTDC8_TDCHIT_TYPE_ERROR_TIMESTAMP_LOST 0x04
Hits missing due to L1 FIFO overflow

#define XHPTDC8_TDCHIT_TYPE_ERROR_ROLLOVER_LOST 0x08
Invalid timestamp due to internal error

#define XHPTDC8_TDCHIT_TYPE_ERROR_PACKETS_LOST 0x10
Hits missing due to a lost DMA packet

#define XHPTDC8_TDCHIT_TYPE_ERROR_SHORTENED 0x20
Hits missing due to a shortened DMA packet

#define XHPTDC8_TDCHIT_TYPE_ERROR_DMA_FIFO_FULL 0x40
Hits missing due to L2 FIFO overflow

#define XHPTDC8_TDCHIT_TYPE_ERROR_HOST_BUFFER_FULL 0x80
Hits missing due to host buffer overflow

If hits are missing the error flag is set on the next hit from the same board that is read out.

Type information for ADC measurements

If the hit is an ADCmeasurement on channels 8 or 9, the following flags are defined for the type field of the
TDCHit structure:

#define XHPTDC8_TDCHIT_TYPE_ADC_INTERNAL 0x01
ADCmeasurement triggered by internal strobe

35 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

#define XHPTDC8_TDCHIT_TYPE_ADC_ERROR 0x02
any type of error

#define XHPTDC8_TDCHIT_TYPE_ADC_ERROR_INVALID_TRIGGER 0x08
TRG input violated timing requirements. Data may be corrupted

#define XHPTDC8_TDCHIT_TYPE_ADC_ERROR_DATA_LOST 0x10
ADCmeasurement missing due to overflow of any buffer

If hits are missing the error flag is set on the next hit from the same board that is read out.

36 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

7 Technical Data

Each board is tested against the values listed in the columns “Min” and “Max”. “Typical” is the mean value of the
first 10 boards produced or a value that is set by design.

7.1 Performance

7.1.1 TDC measurement Characteristics

Symbol Parameter Min Typical Max Units

INL Integral nonlinearity 1 bins

DNL Differential nonlinearity 0.5 bins

tBin Binsize 5000/384 ps

13.02083 ps

tDPfull Interval between edges 5 ns

fReadout Readout rate 48 MHits/s

7.1.2 Oscillator Time Base

Symbol Parameter Min Typical Max Units

ΔT Stability in temperature range −20 °C to 70 °C1 10 ppb

F Initial calibration <300 500 ppb

ΔF/F1 Aging first year 100 ppb

ΔF/F20 All inclusive aging 20 years 1000 ppb

Warm-up2 3 min.
1Over –40 °C to +85 °C; relative to stabilized frequency after 1 hour of continuous operation
2@+25 °C; within ±100 ppb of F, where F is the stabilized frequency reached after 1 hour of continuous operation

7.1.3 ADC

Symbol Parameter Min Typical Max Units

tADC Interval between ADC triggers 300 ns

f-3dB -3dB bandwidth 200 MHz

VLSB Voltage resolution 76 𝜇V

37 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

7.2 Electrical Characteristics

7.2.1 Power Supply

Symbol Parameter Min Typical Max Units

Ptotal Total power consumption 20 W

VCC3.3 PCIe 3.3V rail power supply voltage 3.1 3.3 3.5 V

I3.3 PCIe 3.3V rail input current 600 mA

VCC12 PCIe 12V rail power supply voltage 11.1 12.0 12.9 V

I12 PCIe 12V rail input current 1500 mA

VCCaux PCIe 3.3 VAux rail power supply voltage 3.3 V

Iaux PCIe 3.3 VAux rail input current 0 mA

7.2.2 TDC Inputs

The TDC8HQ’s inputs are single-ended AC-coupled with 50Ω termination.

Symbol Parameter Min Typical Max Units

VBase Input Baseline 0 5 V

VThreshold Trigger Level VBase − 1.32 VBase + 1.18 V

tPulse Pulse Length 2 5 200 ns

tRise Pulse Edge 20% to 80% 10 ns

tFall Pulse Edge 80% to 20% 10 ns

ZP Input Impedance 50 Ω

ITerm Termination Current –50 –20 50 mA

All inputs are AC-coupled. The inputs have very high input bandwidth requirements and therefore there are no
circuits that provide over-voltage protection for these signals. Any voltage on the inputs above 5V or below −5V
relative to the voltage of the slot cover can result in permanent damage to the board.

Keep in mind, that the input baseline VBase is affected by the ratio of pulse length tPulse to average pulse distance
(for continuous signals the term is called duty cycle).

All digital inputs can output AC coupled pulses from the TiGer. Special care should be taken not to enable the
TiGer output when sensitive equipment is connected that could be damaged by the pulses. See Section 3.3.

38 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

7.2.3 ADC Inputs

The ADC input is DC coupled to a differential termination voltage of 400mV. This means that the actual voltage
seen by the ADCwill depend on the output impedance of the source that is driving the input.

Symbol Parameter Min Typical Max Units

Vin Input voltage –2.0 2.5 V

Vterm Termination voltage 0.4 V

Zin Input Impedance 50 Ω

7.2.4 Clock input J2

The clock input J2 is single ended and AC coupled.

Symbol Parameter Min Typical Max Units

Vp-p Peak to Peak voltage 1 3.3 V

Vcm Commonmode voltage voltage –3 3 V

Vtck Clock termination voltage 0 V

Zin Input Impedance 50 Ω

DJ2 Duty cycle 45 50 55 %

fJ2 Frequency 10 MHz

39 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

7.3 Information Required by DIN EN 61010-1

7.3.1 Manufacturer

The TDC8HQ is a product of:

RoentDek Handels GmbH&Co. KG
Im Vogelshaag 8
65779 Kelkheim
Germany HRB 3300-125 016 24973 beim Amtsgericht Koenigstein
VAT-ID: DE113875060
PCI Vendor ID: 0x1A13

7.3.2 Intended Use and System Integration

The devices are not ready to use as delivered by cronologic. It requires the development of specialized software to
fulfill the application of the end-user. The device is provided to system integrators to be built into measurement
systems that are distributed to end users. These systems usually consist of the TDC8HQ, a main board, a case,
application software and possibly additional electronics to attach the system to some type of detector. They might
also be integrated with the detector.

The TDC8HQ is designed to comply with DIN EN 61326-1 when operated on a PCIe compliant main board
housed in a properly shielded enclosure. When operated in a closed standard compliant enclosure the device does
not pose any hazards as defined by EN 61010-1.

Radiated emissions, noise immunity, and safety highly depend on the quality of the enclosure. It is the responsibil-
ity of the system integrator to ensure that the assembled system is compliant to applicable standards of the country
that the system is operated in, especially regarding user safety and electromagnetic interference.

When handling the board, adequate measures must be taken to protect the circuits against electrostatic discharge
(ESD). All power supplied to the systemmust be turned off before installing the board.

7.3.3 Environmental Conditions for Storage

The board shall be stored between operation under the following conditions:

Symbol Parameter Min Typical Max Units

Tstore ambient temperature –30 60 °C

RHstore relative humidity at 31∘C noncondensing 10 70 %

40 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

7.3.4 Environmental Conditions for Operation

The board is designed to be operated under the following conditions:

Symbol Parameter Min Typical Max Units

Toper ambient temperature 5 40 °C

RHoper relative humidity at 31∘C 20 75 %

WARNING: Do not connect any DC-coupled inputs to a channel while the TiGer of that channel is configured as
an output (see Section 3.3). Doing so could permanently damage the TDC8HQ and the external hardware.

7.3.5 Cooling

The TDC8HQ in its base configuration has passive cooling that requires a certain amount of air-flow. If the case
design can’t provide enough air-flow to the board, a slot cooler like Zalman ZM-SC100 can be placed next to the
board. Active cooling is also available as an option for the board.

7.3.6 Recycling

RoentDek is registered with the “Stiftung Elektro-Altgeräte Register” as a manufacturer of electronic systems with
Registration ID DE 48573152.

The TDC8HQ belongs to category 6, “Kleine Geräte der Informations- und Telekommunikationstechnik für
die ausschließliche Nutzung in anderen als privaten Haushalten.” Devices sold before 2018 belong to category
9, “Überwachungs und Kontrollinstrumente für ausschließlich gewerbliche Nutzung.” The last owner of a
TDC8HQmust recycle it, treat the board in compliance with §11 and §12 of the German ElektroG, or return it to
the manufacturer’s address listed on Page 40.

41 RoentDekHandels GmbH TDC8HQManual (1.10.1)

https://www.roentdek.com/

	Introduction
	Features
	Applications

	Hardware
	Installing the PCIe Board
	TDC8HQ Inputs and Connectors
	Status LEDs
	Synchronizing multiple boards
	Connecting multiple boards
	ClockBox
	Crates for multiple boards

	TDC8HQ Functionality
	Grouping and Events
	Auto-Triggering Function Generator
	Timing Generator (TiGer)
	Trigger Sources
	TiGer Example: Generate 200 kHz Start Pulse
	TiGer Example: Delayed Output from multiple sources
	Triggering the ADC with the TiGer

	Gating
	Triggerable ADC

	Driver Programming API
	Constants
	Driver Information
	Initialization
	Structure xhptdc8_manager_init_parameters

	Status Information
	Functions for Information Retrieval
	Structure xhptdc8_static_info
	Structure xhptdc8_param_info
	Structure xhptdc8_fast_info
	Structure crono_pcie_info
	Structure xhptdc8_temperature_info
	Structure xhptdc8_clock_info

	Configuration
	YAML config files
	Structure xhptdc8_manager_configuration
	Structure xhptdc8_device_configuration
	Structure xhptdc8_trigger
	Structure xhptdc8_tiger_block
	Structure xhptdc8_channel
	Structure xhptdc8_adc_channel
	Structure xhptdc8_grouping_configuration

	User Data Storage

	Run Time Control
	Controlling the State of the Driver
	Readout

	Output Data Format
	Memory Management
	Acknowledge Packets
	TDC8HQ-Internal Memory Layout

	Structure TDCHit
	TDCHit Types

	Technical Data
	Performance
	TDC measurement Characteristics
	Oscillator Time Base
	ADC

	Electrical Characteristics
	Power Supply
	TDC Inputs
	ADC Inputs
	Clock input J2

	Information Required by DIN EN 61010-1
	Manufacturer
	Intended Use and System Integration
	Environmental Conditions for Storage
	Environmental Conditions for Operation
	Cooling
	Recycling

